Answer (1 of 6) LHS, sec^2(x) sec(x) tan(x) = 1/cos^2x (1/cosx)(sinx/cosx) = 1/cos^2x sinx/cos^2x = (1sinx)/cos^2x = (1 sinx)/(1–sin^2x) = (1sinx)/(1sinx A = \(\begin{bmatrix} 1&tan x\\tan x&1\\03em \end{bmatrix}\) show that A T A1 = \(\begin{bmatrix} cos 2x& sin 2x\\sin 2x&cos 2x\\03em \end{bmatrix}\)Note I'm only manipulating the left side Start with the given equation Use the identity to simplify the denominator Now use the identity to get the denominator in terms of cosine Multiply the first fraction by the reciprocal of the second fraction

If A Sin X B Cosx 2c Tan X 1 Tan 2 X Then Prove That A 2 B 2 2 4c 2 A 2 B 2 Youtube